T=0 explained

Symmetry of the kth Differential

Theorem:

Pre.: Let $k \in \mathbb{N}_+$ with $k \ge 2$.

Let $n \in \mathbb{N}_+$.

Let G be an open subset of \mathbb{R}^n .

Let $\varphi: G \to \mathbb{R}$ be a mapping.

Let ϕ be k-times differentiable.

Ass.: $\forall p \in G \ d_p^k \phi : \mathbb{R}^n \times ... \times \mathbb{R}^n \to \mathbb{R} \text{ is symmetric}$

A Special Case of Cartan's Derivation

Theorem:

Pre.: Let $n \in \mathbb{N}_+$.

Let G be an open subset of \mathbb{R}^n .

Let $V: G \to \mathbb{R}^n$ be a continuous differentiable mapping.

Let $\omega: G \to \mathfrak{L}\left(\mathbb{R}^n, \mathbb{R}\right)$ be defined as $\omega:=\sum_{i=1}^n V_i \cdot \mathrm{d}x_i$

(espacially $\omega: G \to \mathfrak{L}\left(\mathbb{R}^n, \mathbb{R}\right)$ is continuous differentiable).

Ass.: $\forall p \in G \quad \left(\mathfrak{d}_{p} \omega = 0 \quad \Leftrightarrow \quad d_{p} V \text{ is self-adjoint} \right)$

Rem.: 1. $\mathfrak{L}\left(\mathbb{R}^n,\mathbb{R}\right)$ is the \mathbb{R} -vector-space of all \mathbb{R} -linear-forms \mathbb{R}^n \to \mathbb{R} .

- $^2\cdot$ $\ \omega$ is a so called $\text{C}^1\text{-differential}$ form of degree 1.
- 3. \mathfrak{d} ... is Cartan's derivation. If n=3, then the following is true:

$$\forall p \in G \quad \left(\left(\mathfrak{d}_{p} \omega = 0 \right) \quad \Leftrightarrow \quad \left(\operatorname{curl}_{p} \left(V \right) = 0 \right) \right).$$

3. Vector Potential

Theo::

Pre.: Let $n \in \mathbb{N}_+$.

Let G be an open subset of \mathbb{R}^n .

Ass.: 1. Let $\varphi \in C^2(G)$.

Then the follwing is true:

$$(\forall p \in G \ (d_p (grad (\phi)) \text{ is self-adjoint}))$$

2. Be G star-shaped.

Be
$$k \in \mathbb{N}_+ \cup \{\infty\}$$
.

Let $V: G \to \mathbb{R}^n$ be a k-times continuous differentiable mapping.

Then the following is true:

$$(\forall p \in G \ (d_p V \text{ is self-adjoint})) \Rightarrow$$

$$\exists \varphi \in C^{k+1}(G) \quad V = \operatorname{grad}(\varphi)$$

4. The Inversal of 1 (k=2)

Theorem:

Pre.: Let $n \in \mathbb{N}_+$.

Let G be an open, star-shaped subset of \mathbb{R}^n .

Let $\alpha: G \to \mathfrak{L}\left(\mathbb{R}^n, \mathbb{R}\right)$ be a continuous differentiable mapping.

Let $\beta: G \to \mathfrak{L}^{2}\left(\mathbb{R}^{n}, \mathbb{R}\right)$ be defined through

$$\forall p \in G \quad \forall v, w \in \mathbb{R}^n \quad \left(\beta_p\right)(v, w) := \left(\left(d_p \alpha\right)(v)\right)(w)$$

Rem.: $\mathfrak{L}^{2}\left(\mathbb{R}^{n},\mathbb{R}\right)=\left\{b:\mathbb{R}^{n}\times\mathbb{R}^{n}\to\mathbb{R}\text{ is }\mathbb{R}\text{-bilinear}\right\}$ is a $\mathbb{R}\text{-vector-space.}$

Proof: Let $\mathfrak{E}:=\left(\mathbf{e}_1,\ldots,\mathbf{e}_n\right)$ be the standard base of \mathbb{R}^n . Let $\mathfrak{X}:=\left(\mathbf{x}_1,\ldots,\mathbf{x}_n\right)$ be the base of $\mathfrak{L}\left(\mathbb{R}^n,\mathbb{R}\right)$ dual to \mathfrak{E} .

Let the mapping $V: G \to \mathbb{R}^n$ be defined as

$$\forall p \in G \quad V(p) := \begin{pmatrix} \alpha_p(e_1) \\ \vdots \\ \alpha_p(e_n) \end{pmatrix}$$
 (1)

Then the following statements are valid:

$$V: G \to \mathbb{R}^n$$
 is continuous differentiable (2)

and

$$\forall p \in G \quad d_{p}V = \begin{pmatrix} d_{p} \left(\alpha_{...} \left(e_{1}\right)\right) \\ \vdots \\ d_{p} \left(\alpha_{...} \left(e_{n}\right)\right) \end{pmatrix} = \begin{pmatrix} \left(d_{p}\alpha\right)\left(e_{1}\right) \\ \vdots \\ \left(d_{p}\alpha\right)\left(e_{n}\right) \end{pmatrix}$$
(3)

Then the following statement is true:

$$\forall j \in \{1, ..., n\} \quad \forall p \in G \quad \left(d_p V\right) \left(e_j\right) = \frac{\partial V}{\partial x_j}$$
 (4)

A consequence of (3) is

$$\forall j \in \{1, \dots, n\} \quad \forall p \in G \quad \left(\operatorname{d}_{p} V\right) \left(\operatorname{e}_{j}\right) = \begin{pmatrix} \left(\operatorname{d}_{p} \alpha\right) \left(\operatorname{e}_{1}\right) \\ \vdots \\ \left(\operatorname{d}_{p} \alpha\right) \left(\operatorname{e}_{n}\right) \end{pmatrix} \left(\operatorname{e}_{j}\right)$$

Then it follows by premise:

$$\forall j \in \{1, \dots, n\} \quad \forall p \in G \quad \left(d_p V\right) \left(e_j\right) = \begin{pmatrix} \left(\beta_p\right) \left(e_1, e_j\right) \\ \vdots \\ \left(\beta_p\right) \left(e_n, e_j\right) \end{pmatrix} \tag{5}$$

Because $(\forall p \in G \ (\beta_p \text{ is symmetric}))$, a consequence of (4) and (5) is

$$\left(\forall p \in G \ \left(d_p V \text{ is self-adjoint}\right)\right) \tag{6}$$

Because of (2), (6) and theroem 3.2., there exists $\varphi \in C^2(G)$ with

$$V = grad(\phi) \tag{7}$$

Because of (1) and (7), for all $\forall i \in \{1, ..., n\}$ and all $\forall p \in G$ the following statement is valid:

$$\left(\mathrm{d}_{\mathcal{D}}\varphi\right)\left(\mathrm{e}_{\underline{i}}\right) = \frac{\partial\varphi}{\partial x_{\underline{i}}}\left(p\right) = \left(\mathrm{grad}_{\mathcal{D}}\left(\varphi\right)\right)_{\underline{i}} = V_{\underline{i}}\left(p\right) = \alpha_{\mathcal{D}}\left(\mathrm{e}_{\underline{i}}\right)$$

respectively

$$d\phi = \alpha \tag{8}$$

Then it follows for all $\forall i, j \in \{1, ..., n\}$ and all $\forall p \in G$

$$\mathbf{d}_{\mathcal{D}}^{2}\boldsymbol{\varphi}\left(\mathbf{e}_{\underline{i}},\mathbf{e}_{\underline{j}}\right)=\left(\mathbf{d}_{\mathcal{D}}\left(\left(\mathbf{d}_{...}\boldsymbol{\varphi}\right)\left(\mathbf{e}_{\underline{i}}\right)\right)\right)\left(\mathbf{e}_{\underline{j}}\right)=\left(\mathbf{d}_{\mathcal{D}}\left(\left(\boldsymbol{\alpha}_{...}\right)\left(\mathbf{e}_{\underline{i}}\right)\right)\right)\left(\mathbf{e}_{\underline{j}}\right)$$

respectively

$$d_{\mathcal{P}}^{2} \varphi \left(e_{\underline{i}}, e_{\underline{j}} \right) = \left(\left(d_{\mathcal{P}} \left(\alpha \right) \right) \left(e_{\underline{i}} \right) \right) \left(e_{\underline{j}} \right)$$

respectively by premise

$$d_{p}^{2} \varphi \left(e_{i}, e_{j} \right) = \left(\beta_{p} \left(e_{i}, e_{j} \right) \right)$$

At last we have

$$d^2 \varphi = \beta \tag{9}$$

5. Charts

```
Let n \in \mathbb{N}_+.

Let M be a smooth manifold of dimension n.

Let x = \operatorname{id}_{\mathbb{R}^M}.

Let u be a chart of M.

Then we have:

Gu is a smooth open submanifold of M

u(\operatorname{G}u) is a smooth open submanifold of \mathbb{R}^n

\operatorname{T}(\operatorname{G}u) is a smooth open submanifold of \operatorname{T}M

\operatorname{T}(u(\operatorname{G}u)) is a smooth open submanifold of \operatorname{T}M

\operatorname{T}(u(\operatorname{G}u)) is a smooth open submanifold of \operatorname{T}(\mathbb{R}^n)

u_\star\left(u^{-1}\right)_\star=\left(\operatorname{id}_{u(\operatorname{G}u)}\right)_\star=\operatorname{id}_{\operatorname{T}(u(\operatorname{G}u))}

\left(u^{-1}\right)_\star u_\star=\left(\operatorname{id}_{\operatorname{G}u}\right)_\star=\operatorname{id}_{\operatorname{T}(\operatorname{G}u)}

u_\star:\operatorname{T}(\operatorname{G}u)\to\operatorname{T}(u(\operatorname{G}u)) is a diffeomorphism \left(u_\star\right)^{-1}=\left(u^{-1}\right)_\star

\forall k\in\{1,\ldots,n\} \frac{\partial}{\partial u_k}=\left(u^{-1}\right)_\star\left(\frac{\partial}{\partial x_k}\circ u\right)

\forall k\in\{1,\ldots,n\} u_\star \frac{\partial}{\partial u_k}=\left(u^{-1}\right)_\star\left(\frac{\partial}{\partial x_k}\circ u\right)
```

6. Application of 4

Theorem:

Pre.: Let $n \in \mathbb{N}_+$ be with $n \ge 2$.

Let (M, < ...; ... >) be a Riemannian C^{∞} -manifold of dimension n.

Let ∇ a affine connection of M.

Let ∇ be compatible with the metric $<\ldots;\ldots>$.

Let T the Torsion tensor field of ∇ .

Let u be a chart of M with Gu = M.

Let $u(Gu) = u(M) \subseteq \mathbb{R}^n$ be star-shaped.

We define the so called "Christoffel-Symbols" through

$$\forall \textit{i, j, k} \in \{1, \dots, n\} \quad \Gamma_{\textit{ij}}^{\textit{k}} := \langle \nabla_{\underbrace{\partial}_{\partial u_{\textit{i}}}} \frac{\partial}{\partial u_{\textit{j}}}; \frac{\partial}{\partial u_{\textit{k}}} \rangle$$

$$\in \mathbb{C}^{\infty}(\textit{M}, \mathbb{R})$$

Let (e_1, \dots, e_n) be the canonical base of \mathbb{R}^n .

We define a C^{∞} -mapping $g:u\left(\mathrm{G}u\right)\to\mathfrak{L}^{2}\left(\mathbb{R}^{n},\mathbb{R}\right)$ through

$$\forall q \in u (Gu) \quad \forall a, b \in \mathbb{R}^n \quad g_q (a, b) :=$$

$$= \sum_{j,k=1}^n a_j b_k \left(< \left(u^{-1} \right)_\star \frac{\partial}{\partial x_j} ; \left(u^{-1} \right)_\star \frac{\partial}{\partial x_k} > \right)_q$$

Ass.: Let for all $\forall k \in \{1, ..., n\}$ $\varphi_k \in C^2\left(u\left(\mathrm{G}u\right), \mathbb{R}\right)$ an antiderivative of $g\left(\mathrm{e}_k, ...\right) : u\left(\mathrm{G}u\right) \to \mathfrak{L}\left(\mathbb{R}^n, \mathbb{R}\right)$. Then the following is true:

$$T = 0 \Leftrightarrow \begin{cases} \forall k \in \{1, ..., n\} & \forall i, j \in \{1, ..., n\} \\ \left(\Gamma_{ij}^{k} \circ u^{-1}\right) + \frac{1}{2} d\left(g\left(e_{i}, e_{j}\right)\right)\left(e_{k}\right) = d^{2}\left(\phi_{k}\right)\left(e_{i}, e_{j}\right) \end{cases}$$

Rem.: We apply 4. and get for all $k \in \{1, ..., n\}$:

$$\begin{pmatrix} \text{There exists an antiderivative of} \\ g\left(\mathbf{e}_{k},\ldots\right):u\left(\mathbf{G}u\right)\to\mathfrak{L}\left(\mathbb{R}^{n},\mathbb{R}\right) \end{pmatrix} \Leftrightarrow \\ \begin{pmatrix} \forall \textit{i,j}\in\left\{1,\ldots,n\right\} \\ \text{d}\left(g\left(\mathbf{e}_{k},\mathbf{e}_{\textit{j}}\right)\right)\left(\mathbf{e}_{\textit{i}}\right)=\text{d}\left(g\left(\mathbf{e}_{k},\mathbf{e}_{\textit{i}}\right)\right)\left(\mathbf{e}_{\textit{j}}\right) \end{pmatrix}$$

Proof: The case " \leftarrow " is trivial. So let be T = 0.

Let $k \in \{1, ..., n\}$. Because of T = 0 and because ∇ is compatible with the metric < ...; ... >, there is a known formula for the "Christoffel-Symbols". For every $i, j \in \{1, ..., n\}$ it holds:

$$\begin{split} \Gamma^k_{ij} &= \frac{1}{2} \left(\frac{\partial}{\partial u_i} \cdot \langle \frac{\partial}{\partial u_j}; \frac{\partial}{\partial u_k} \rangle + \right. \\ &+ \frac{\partial}{\partial u_j} \cdot \langle \frac{\partial}{\partial u_k}; \frac{\partial}{\partial u_i} \rangle + \\ &- \frac{\partial}{\partial u_k} \cdot \langle \frac{\partial}{\partial u_i}; \frac{\partial}{\partial u_j} \rangle \right) \end{split}$$

The following is elementary:

$$\forall i \in \{1, ..., n\}$$
 $\frac{\partial}{\partial u_i} = \left(u^{-1}\right)_{\star} \frac{\partial}{\partial x_i} \circ u$

With this we have for every ι , κ , $\lambda \in \{1, ..., n\}$:

$$\left(\frac{\partial}{\partial u_{\mathbf{i}}} \cdot \langle \frac{\partial}{\partial u_{\mathbf{K}}}; \frac{\partial}{\partial u_{\lambda}} \rangle\right) \circ u^{-1} =$$

$$= \left(\left(u^{-1}\right)_{\star} \frac{\partial}{\partial x_{\mathbf{i}}} \circ u\right) \cdot \langle \frac{\partial}{\partial u_{\mathbf{K}}}; \frac{\partial}{\partial u_{\lambda}} \rangle\right) \circ u^{-1} =$$

$$= \left(\left(u^{-1}\right)_{\star} \frac{\partial}{\partial x_{\mathbf{i}}}\right) \cdot \langle \frac{\partial}{\partial u_{\mathbf{K}}}; \frac{\partial}{\partial u_{\lambda}} \rangle =$$

$$= \frac{\partial}{\partial x_{\mathbf{i}}} \cdot \left(\langle \frac{\partial}{\partial u_{\mathbf{K}}}; \frac{\partial}{\partial u_{\lambda}} \rangle \circ u^{-1}\right) =$$

$$= \frac{\partial}{\partial x_{\mathbf{i}}} \cdot \left(\langle \left(u^{-1}\right)_{\star} \frac{\partial}{\partial x_{\mathbf{K}}}; \left(u^{-1}\right)_{\star} \frac{\partial}{\partial x_{\lambda}} \rangle\right)$$

We remember the mapping $g:u\left(\mathrm{G}u\right)\to\mathfrak{L}^{2}\left(\mathbb{R}^{n},\mathbb{R}\right).$ Then we have for all $i,j\in\{1,\ldots,n\}$:

$$\begin{split} \Gamma_{ij}^{k} \circ u^{-1} &= \frac{1}{2} \Biggl(\frac{\partial}{\partial x_{i}} \cdot g \left(\mathbf{e}_{j}, \mathbf{e}_{k} \right) + \frac{\partial}{\partial x_{j}} \cdot g \left(\mathbf{e}_{k}, \mathbf{e}_{i} \right) + \\ &- \frac{\partial}{\partial x_{k}} \cdot g \left(\mathbf{e}_{i}, \mathbf{e}_{j} \right) \Biggr) = \\ &= \frac{1}{2} \Biggl(\Biggl(\mathbf{d} \left(g \left(\mathbf{e}_{k}, \mathbf{e}_{j} \right) \right) \left(\mathbf{e}_{i} \right) \Biggr) + \left(\mathbf{d} \left(g \left(\mathbf{e}_{k}, \mathbf{e}_{i} \right) \right) \left(\mathbf{e}_{j} \right) \right) + \\ &- \left(\mathbf{d} \left(g \left(\mathbf{e}_{i}, \mathbf{e}_{j} \right) \right) \left(\mathbf{e}_{k} \right) \right) \Biggr) \end{split}$$

respectively

$$\begin{split} \left(\Gamma_{ij}^{k} \circ u^{-1}\right) + \frac{1}{2} \, \mathrm{d} \left(g\left(\mathbf{e}_{i}, \mathbf{e}_{j}\right)\right) \left(\mathbf{e}_{k}\right) &= \\ &= \frac{1}{2} \left(\mathrm{d} \left(g\left(\mathbf{e}_{k}, \mathbf{e}_{j}\right)\right) \left(\mathbf{e}_{i}\right) + \mathrm{d} \left(g\left(\mathbf{e}_{k}, \mathbf{e}_{i}\right)\right) \left(\mathbf{e}_{j}\right)\right) &= \\ &= \mathrm{d} \left(g\left(\mathbf{e}_{k}, \mathbf{e}_{j}\right)\right) \left(\mathbf{e}_{i}\right) &= \\ &= \mathrm{d}^{2} \left(\phi_{k}\right) \left(\mathbf{e}_{i}, \mathbf{e}_{j}\right) \end{split}$$

7. Literature

- [1] http://www.Reinbothe.de/english/download/Geometry.pdf
- [2] http://WWW.Reinbothe.de/english/download/Tensors.pdf