Lemma: I

Pre.: Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ be a \mathbb{R} -linear mapping. Let <...;...> be a scalar product on \mathbb{R}^2 .

Ass.: Φ is an isometry of $(\mathbb{R}^2, < ...; ... >)$ \Leftrightarrow

There is an orthonormal base of $(\mathbb{R}^2, < ...; ... >)$, that the matrix of Φ , which is related to this base, has one of the following shapes:

a)
$$\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

b)
$$\begin{pmatrix} \cos(9) & -\sin(9) \\ \sin(9) & \cos(9) \end{pmatrix}$$
where $9 \in [0; 2\pi[$

Proof:

" \Rightarrow ": Let Φ be an isometry of $(\mathbb{R}^2, < ...; ... >)$.

Because $\left(\mathbb{R}^2,<\ldots;\ldots>\right)$ is a finite dimensional \mathbb{R} -vectorspace, there exists by [4] an orthonormal base $\left(\mathbf{e}_1,\mathbf{e}_2\right)\in\left(\mathbb{R}^2\right)^2$ of $\left(\mathbb{R}^2,<\ldots;\ldots>\right)$.

Because Φ is an isometry of $(\mathbb{R}^2, < ...; ... >)$, the following is true:

$$\forall u \in \mathbb{R}^2 \quad \langle u; u \rangle = \langle \Phi(u); \Phi(u) \rangle \tag{1}$$

With (1) we have:

$$\Phi: \mathbb{R}^2 \to \mathbb{R}^2$$
 is bijective (2)

and

$$\forall v, w \in \mathbb{R}^2 \quad \langle v; w \rangle = \langle \Phi(v); \Phi(w) \rangle \tag{3}$$

Because of [4] and because $(e_1,e_2) \in (\mathbb{R}^2)^2$ is a base of $(\mathbb{R}^2,<\ldots;\ldots>)$, there are $a,b,c,d\in\mathbb{R}$ with

$$\Phi(e_1) = ae_1 + ce_2$$
 and $\Phi(e_2) = be_1 + de_2$

That means with (2)

The matrix
$$A := \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$$
 is the matrix of the \mathbb{R} -linear isometry Φ , which is related to the base $\left(e_1, e_2\right)$ of $\left(\mathbb{R}^2, < \ldots; \ldots > \right)$.

With [4] the following is true:

Because $(e_1, e_2) \in (\mathbb{R}^2)^2$ is an orthonormal base, we have with [4] and (5):

The matrix
$$A^t := \begin{pmatrix} a & c \\ b & d \end{pmatrix} \in M_{2 \times 2} (\mathbb{R})$$
 is the matrix of φ , which is related to the base
$$\left(e_1, e_2\right) \text{ of } \left(\mathbb{R}^2, < \dots; \dots > \right). \tag{6}$$

On the other hand we have with (2) and (4):

$$0 \neq \det(A) = ad - bc \in \mathbb{R}$$
 (7)

and

The matrix
$$A^{-1} := \frac{1}{\det(A)} \begin{pmatrix} d & -b \\ -c & a \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$$
 is the matrix of Φ^{-1} , which is related to the base (e_1, e_2) of $(\mathbb{R}^2, < \dots; \dots >)$.

Now we have with (3):

$$\forall v, w \in \mathbb{R}^2$$
 $\langle v; \Phi^{-1}(w) \rangle = \langle \Phi(v); \Phi(\Phi^{-1}(w)) \rangle$

respectively

$$\forall v, w \in \mathbb{R}^2$$
 $\langle v; \Phi^{-1}(w) \rangle = \langle \Phi(v); w \rangle$

With (4), (5), (6) and (8) we have:

$$\varphi = \Phi^{-1} \text{ and } A^t = A^{-1}$$

$$1 = \det(AA^{-1}) = \det(AA^t) = (\det(A))^2$$
(9)

With that and (7) we have at last:

$$\det (A) \in \{1, -1\} \tag{10}$$

1. case: det(A) = -1

With (6), (8) und (9) we have:

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = A^{t} = A^{-1} = (-1) \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

respectively

$$a = -d \text{ und } b = c \tag{*}$$

Let $I_2\in \mathrm{GL}_2\left(\mathbb{R}\right)$ be the identity matrix. Now we define the characteristic polynom $\chi_A\left(\lambda\right)\in\mathbb{R}\left[\lambda\right]$ of A through

$$\chi_A(\lambda) := \det(A - \lambda I_2)$$

With (4) we have:

$$\chi_A(\lambda) = \det \begin{pmatrix} a - \lambda & b \\ c & d - \lambda \end{pmatrix}$$

respectively

$$\chi_A(\lambda) = ad - bc - (a + d)\lambda + \lambda^2$$

With det(A) = -1, (7) and (*) we have:

$$\chi_{A}(\lambda) = \lambda^{2} - 1 = (\lambda - 1)(\lambda + 1)$$

Then we define $\lambda_1,\lambda_2\in\mathbb{R}$ durch $\lambda_1\coloneqq 1$ und $\lambda_2\coloneqq -1\,.$ The the following is true:

$$\forall i \in \{1,2\} \qquad \chi_A\left(\lambda_i\right) = 0$$
 d.h. λ_1,λ_2 are eigenvalues of A

According to [4] there exists $v_1, v_2 \in \mathbb{R}^2$ with:

$$\begin{array}{ll} \forall i \in \{1,2\} & v_i \neq 0 \\ \\ \forall i \in \{1,2\} & < v_i; v_i > = 1 \\ \\ \text{and} \\ \\ \forall i \in \{1,2\} & Av_i = \lambda_i v_i \\ \\ \text{d.h.} & v_1, v_2 \text{ are eigenvectors of } A \end{array}$$

With that we have:

$$\forall i \in \{1, 2\}$$
 $\Phi(v_i) = \lambda_i v_i$

With (3) we have:

$$\langle v_1; v_2 \rangle = \langle \Phi(v_1); \Phi(v_2) \rangle$$

With that we get:

$$< v_1; v_2 > = \lambda_1 \lambda_2 < v_1; v_2 >$$

Because $\lambda_1 \lambda_2 = -1$, it is shown:

$$< v_1; v_2 > = 0$$

Then (v_1,v_2) is an orthonormal base of $(\mathbb{R}^2,<\ldots;\ldots>)$. Then we have:

The matrix $\tilde{\mathbf{A}} := \begin{pmatrix} \lambda_1 & \mathbf{0} \\ \mathbf{0} & \lambda_2 \end{pmatrix} \in \operatorname{GL}_2(\mathbb{R})$ is the matrix of the \mathbb{R} -linear isometry Φ which is related to $\begin{pmatrix} v_1, v_2 \end{pmatrix}$.

2. case: det(A) = 1

With (6), (8) and (9) we have:

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = A^{t} = A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

respectively

$$a = d$$
 and $b = -c$ (**)

Because det(A) = 1 and (7), we have:

$$1 = ad - bc = a^2 + c^2$$

According to [4] there exists $\vartheta \in [0, 2\pi[$ with

$$a = \cos(9)$$
 and $c = \sin(9)$

With (4) and (**), we have at last:

$$A = \begin{pmatrix} \cos(9) & -\sin(9) \\ \sin(9) & \cos(9) \end{pmatrix}$$

"\(\infty\)": Let
$$(e_1,e_2) \in (\mathbb{R}^2)^2$$
 be an orthonormal base of $(\mathbb{R}^2,<\ldots;\ldots>)$. Let $A\in M_{2\times 2}(\mathbb{R})$ with

a)
$$A = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$$

or

b)
$$\exists \vartheta \in [0, 2\pi[$$
 $A = \begin{pmatrix} \cos(\vartheta) & -\sin(\vartheta) \\ \sin(\vartheta) & \cos(\vartheta) \end{pmatrix}$

Let A the matrix of the \mathbb{R} -linear mapping $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$, which is related to (e_1, e_2) . Then we have:

$$A \in GL_2(\mathbb{R}) \text{ and } A^t = A^{-1}$$
 (1)

Because (e_1, e_2) is an orthonormal base of $(\mathbb{R}^2, < \dots; \dots >)$, we have:

For the
$$\mathbb{R}$$
-linear mapping $\varphi: \mathbb{R}^2 \to \mathbb{R}^2$ is A^t the matrix of φ , which is related (e_1, e_2) , and the following is true:
$$\forall v, w \in \mathbb{R}^2 \quad < \Phi(v); w > = < v; \varphi(w) > 0$$

With (1) and (2) we have:

$$\forall v, w \in \mathbb{R}^2 \quad < \Phi(v); w > = < v; \Phi^{-1}(w) >$$

respectively

$$\forall v \in \mathbb{R}^2 \quad < \Phi(v); \Phi(v) > = < v; \Phi^{-1}(\Phi(v)) >$$

respectively

$$\forall v \in \mathbb{R}^2 \quad < \Phi(v); \Phi(v) > = < v; v >$$

With this it is shown:

$$\Phi$$
 is an isometry of \mathbb{R}^2 , $<\ldots$;... $>$

Lemma: II

Pre.: Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ be a \mathbb{R} -linear mapping.

Ass.: $\begin{cases} \text{For every norm } \|...\| \text{ on } \mathbb{R}^2 \text{ is true:} \\ \Phi: \left(\mathbb{R}^2,\|...\|\right) \to \left(\mathbb{R}^2,\|...\|\right) \text{ is an isometry} \\ \text{of normed } \mathbb{R}\text{-vectorspaces} \end{cases} \Rightarrow$

There is no scalar product < ...; ... > on \mathbb{R}^2 and no orthonormal base \mathfrak{B} of $(\mathbb{R}^2, < ...; ... >)$, that the matrix of Φ , which is related to \mathfrak{B} , has the following shape: $\begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$

Proof: We assume now:

For every norm
$$\|...\|$$
 on \mathbb{R}^2 is true:
$$\Phi: \left(\mathbb{R}^2, \|...\|\right) \to \left(\mathbb{R}^2, \|...\|\right) \text{ is an isometry}$$
of normed \mathbb{R} -vectorspaces

Let $<\dots;\dots>$ be a scalar product on \mathbb{R}^2 and let $\left(\mathbf{e}_1,\mathbf{e}_2\right)\in\left(\mathbb{R}^2\right)^2$ be an orthonormal base of $\left(\mathbb{R}^2,<\dots;\dots>\right)$ und let

$$\Phi\left(e_{1}\right) = e_{1} \text{ and } \Phi\left(e_{2}\right) = -e_{2} \tag{2}$$

Then we define a base $(v_1,v_2)\in \left(\mathbb{R}^2\right)^2$ von $\left(\mathbb{R}^2,<\ldots;\ldots>\right)$ through

$$v_1 = \frac{1}{\sqrt{2}} (e_1 + e_2)$$
 and $v_2 = \frac{1}{\sqrt{2}} (e_1 - e_2)$ (3)

Then we have:

and

$$\Phi\left(v_{1}\right) = v_{2} \text{ und } \Phi\left(v_{2}\right) = v_{1} \tag{5}$$

Now we define a norm $\left\| ... \right\|_1$ on \mathbb{R}^2 through

$$\forall u \in \mathbb{R}^2 \quad \|u\|_1 := \frac{1}{2} |\langle u; v_1 \rangle| + 2 |\langle u; v_2 \rangle| \tag{6}$$

With this we have at last:

$$\|v_1\|_1 = \frac{1}{2} \quad \text{und} \quad \|v_2\|_1 = 2$$
 (7)

(1), (5) are (7) are contradictory!

Lemma: III

Pre.: Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ be a \mathbb{R} -linear mapping. Let $< \dots; \dots >$ be a scalar product on \mathbb{R}^2 and let $\left(\mathbf{e}_1, \mathbf{e}_2 \right) \in \left(\mathbb{R}^2 \right)^2$ be an orthonormal base of $\left(\mathbb{R}^2, < \dots; \dots > \right)$.

Let $\vartheta \in [0, 2\pi[$ and let $\begin{pmatrix} \cos(\vartheta) & -\sin(\vartheta) \\ \sin(\vartheta) & \cos(\vartheta) \end{pmatrix}$ the matrix of Φ which is related to $\begin{pmatrix} e_1, e_2 \end{pmatrix}$.

Ass.: $\begin{cases} \text{For every norm } \|...\| \text{ on } \mathbb{R}^2 \text{ is true:} \\ \Phi: \left(\mathbb{R}^2, \|...\|\right) \to \left(\mathbb{R}^2, \|...\|\right) \text{ is an isometry} \\ \text{of normed } \mathbb{R}\text{-vectorspaces} \end{cases} \Rightarrow \\ 9 \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\}$

Proof: We assume now:

For every norm
$$\|...\|$$
 on \mathbb{R}^2 is true:
$$\Phi: \left(\mathbb{R}^2, \|...\|\right) \to \left(\mathbb{R}^2, \|...\|\right) \text{ is an isometry}$$
of normed \mathbb{R} -vectorspaces

Then we define a norm $\left\| ... \right\|_1$ on \mathbb{R}^2 through

$$\forall u \in \mathbb{R}^2 \quad \|u\|_1 := \max\left\{ \left| \langle u; e_1 \rangle \right|, \left| \langle u; e_2 \rangle \right| \right\}$$
 (2)

Then we have:

$$\|e_1\|_1 = 1 \text{ und } \|e_2\|_1 = 1$$
 (3)

On the other hand the following is true:

$$\left\|\Phi\left(\mathbf{e}_{1}\right)\right\|_{1} = \left\|\Phi\left(\mathbf{e}_{2}\right)\right\|_{1} = \max\left\{\left|\cos\left(\vartheta\right)\right|, \left|\sin\left(\vartheta\right)\right|\right\} \tag{4}$$

With (1), (3) and (4) we have:

$$1 = \max \{ |\cos(9)|, |\sin(9)| \}$$
 (5)

Because $\vartheta \in [0, 2\pi[$, we get at last:

$$\vartheta \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\} \tag{6}$$

Lemma: IV

Pre.: Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ be a \mathbb{R} -linear mapping. Let $<\dots;\dots>$ be a scalar product on \mathbb{R}^2 and let $\left(\mathbf{e}_1,\mathbf{e}_2\right) \in \left(\mathbb{R}^2\right)^2$ be an orthonormal base of $\left(\mathbb{R}^2,<\dots;\dots>\right)$.

Let $\vartheta \in [0, 2\pi[$ and let $\begin{pmatrix} \cos(\vartheta) & -\sin(\vartheta) \\ \sin(\vartheta) & \cos(\vartheta) \end{pmatrix}$ the matrix of Φ which is related to $\begin{pmatrix} e_1, e_2 \end{pmatrix}$.

Ass.: $\begin{cases} \text{For every norm } \|...\| \text{ on } \mathbb{R}^2 \text{ is true:} \\ \Phi: \left(\mathbb{R}^2,\|...\|\right) \to \left(\mathbb{R}^2,\|...\|\right) \text{ is an isometry} \\ \text{of normed } \mathbb{R}\text{-vectorspaces} \end{cases} \Rightarrow \\ 9 \in \{0,\pi\}$

Proof: We assume now:

For every norm
$$\|...\|$$
 on \mathbb{R}^2 is true:
$$\Phi: \left(\mathbb{R}^2, \|...\|\right) \to \left(\mathbb{R}^2, \|...\|\right) \text{ is an isometry}$$
of normed \mathbb{R} -vectorspaces

According to Lemma III we have:

$$\vartheta \in \left\{0, \frac{\pi}{2}, \pi, \frac{3\pi}{2}\right\} \tag{2}$$

Then we have to proof:

$$\vartheta \in \{0, \pi\} \tag{3}$$

Ass.:
$$\vartheta = \frac{\pi}{2}$$
 or $\vartheta = \frac{3\pi}{2}$ (4)

Then there exists $\alpha\in\{1,-1\}$, that $\alpha\begin{pmatrix}0&-1\\1&0\end{pmatrix}$ is the matrix of Φ which is related to $\left(e_1,e_2\right)$. Then we have:

$$\Phi(e_1) = \alpha e_2 \text{ and } \Phi(e_2) = -\alpha e_1$$
 (5)

We now define a norm $\left\| ... \right\|_1$ on \mathbb{R}^2 through

$$\forall u \in \mathbb{R}^2 \quad ||u||_1 := \frac{1}{2} |\langle u; e_1 \rangle| + 2 |\langle u; e_2 \rangle|$$
 (6)

For this norm the following is true:

$$\|\mathbf{e}_1\|_1 = \frac{1}{2} \quad \text{and} \quad \|\mathbf{e}_2\|_1 = 2$$
 (7)

(1), (5) and (7) are contradictory!

Lemma: V (Consequence of Lemma I, II, III and IV)

Pre.: Let $\Phi: \mathbb{R}^2 \to \mathbb{R}^2$ be a \mathbb{R} -linear mapping.

$$\Phi \in \left\{ \operatorname{id}_{\mathbb{R}^2}, -\operatorname{id}_{\mathbb{R}^2} \right\}$$

Proof of 4.3.

Obviously we have to proof:

$$\begin{cases} \text{For every norm } \|...\| \text{ on } \mathbb{R}^2 \text{ is true:} \\ \Phi: \left(\mathbb{R}^2,\|...\|\right) \to \left(\left(\mathbb{R}^2\right)^{**},\|...\|_{**}\right) \text{ is an isometry} \\ \text{of normed } \mathbb{R}\text{-vectorspaces} \end{cases} \Rightarrow$$

$$\Phi \in \left\{ \mathcal{Q}_{\mathbb{R}^2}, -\mathcal{Q}_{\mathbb{R}^2} \right\}$$

Proof:

We assume:

For every norm
$$\|..\|$$
 on \mathbb{R}^2 is true:
$$\Phi: \left(\mathbb{R}^2, \|..\|\right) \to \left(\left(\mathbb{R}^2\right)^{**}, \|...\|_{**}\right) \text{ is an isometry}$$
of normed \mathbb{R} -vectorspaces

With this we have:

For every norm
$$\|..\|$$
 on \mathbb{R}^2 is true:
$$\left(\left(\mathcal{Q}_{\mathbb{R}^2}\right)^{-1} \circ \Phi\right) : \left(\mathbb{R}^2, \|..\|\right) \to \left(\mathbb{R}^2, \|..\|\right) \text{ is an}$$
 isometry of normed \mathbb{R} -vectorspaces

This means with Lemma V:

$$\left(\left(\mathcal{Q}_{\mathbb{R}^2} \right)^{-1} \circ \Phi \right) \in \left\{ id_{\mathbb{R}^2}, -id_{\mathbb{R}^2} \right\}$$
 (3)

Then there exists $a \in \{1, -1\}$ with

$$\left(Q_{\mathbb{R}^2}\right)^{-1} \circ \Phi = a \cdot id_{\mathbb{R}^2} \tag{4}$$

Because $\mathcal{Q}_{\mathbb{R}^2}$ is a \mathbb{R} -linear mapping, we get:

$$\underbrace{\mathcal{Q}_{\mathbb{R}^2} \circ \left(\mathcal{Q}_{\mathbb{R}^2}\right)^{-1}}_{=\mathrm{id} \star \star} \circ \Phi = a \cdot \mathcal{Q}_{\mathbb{R}^2}$$

$$\underbrace{\left(\mathbb{R}^2\right)^{+1}}_{\text{min}} \circ \Phi = a \cdot \mathcal{Q}_{\mathbb{R}^2}$$
(5)

Because $a \in \{1, -1\}$, we have at last:

$$\Phi \in \left\{ Q_{\mathbb{R}^2}, -Q_{\mathbb{R}^2} \right\} \tag{6}$$